Logarithmic Coefficients Inequality for the Family of Functions Convex in One Direction

نویسندگان

چکیده

The logarithmic coefficients play an important role for different estimates in the theory of univalent functions. Due to significance recent studies about coefficients, problem obtaining sharp bounds modulus these has received attention. In this research, we obtain inequality involving functions well-known class G and investigate a majorization belonging family. To prove our main results, use Briot–Bouquet differential subordination obtained by J.A. Antonino S.S. Miller result T.J. Suffridge connected Alexander integral. Combining give inequalities two types sums modules logarithmical indicating also extremal function. addition, derivative majorized G, followed application.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

JENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS

In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.

متن کامل

The Logarithmic Coefficient Inequality for Close–to–convex Functions of Complex Order

We prove that if n 2 for each close-to-convex functions of complex order b in S whose n− th logarithmic coefficients γn satisfies |γn| An−1 logn, where A is an absolute constant. Mathematics subject classification (2010): 30C45.

متن کامل

study of cohesive devices in the textbook of english for the students of apsychology by rastegarpour

this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...

An inequality related to $eta$-convex functions (II)

Using the notion of eta-convex functions as generalization of convex functions, we estimate the difference between the middle and right terms in Hermite-Hadamard-Fejer inequality for differentiable mappings. Also as an application we give an error estimate for midpoint formula.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11092140